Robust Positioning of Laser Beams Using Proportional Integral Derivative and Based Observer-Feedback Control
نویسندگان
چکیده
High-precision positioning of laser beams has been a great challenge in industry due to inevitable existence of noise and disturbance. The work presented in this study addresses this problem by employing two different control strategies: Proportional Integral Derivative (PID) control and state feedback control with an observer. The control strategies are intended to stabilize the position of a laser beam on a Position Sensing Device (PSD) located on a Laser Beam Stabilization (or, laser beam system) system. The laser beam system consists of a laser source, a Fast Steering Mirror (FSM), a PSD and a vibrating platform to generate active disturbance. The traditional PID controller is widely used in industry due to its satisfactory performance, various available tuning methods and relatively straightforward design processes. However, design of filters to obtain the derivative signal is challenging and can unexpectedly distort the dynamics of the system being controlled. As an alternative, use of an Observer-Based State Feedback (OBSF) method is proposed and implemented. The state-space model of the laser beam system is utilized and an observer is applied to estimate the state of the system, since all the state variables cannot be measured directly. For observer design, eigenvalue assignment and optimal design methods are used and compared in terms of system performance. Also a comparative analysis between the PID and OBSF controllers is provided. Simulations and experimental results show that the OBSF controller rejects disturbance better and has a simpler design procedure.
منابع مشابه
A Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملRobust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance
This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...
متن کاملQuadrotor Control Using Fractional-Order PI^λ D^μ Control
Quadrotor control has been noted for its trouble as the consequence of the high maneuverability, system nonlinearity and strongly coupled multivariable. This paper deals with the simulation depend on proposed controller of a quadrotor that can overcome this trouble. The mathematical model of quadrotor is determined using a Newton-Euler formulation. Fractional Order Proportional Integral Derivat...
متن کاملRobust Controller Design Based on Sliding Mode Observer in The Presence of Uncertainties and Actuator Saturation
This paper studies the design of a robust output feedback controller subject to actuator saturation. For this purpose, a robust high-gain sliding mode observer is used to estimate the state variables. Moreover, the combination of Composite Nonlinear Feedback (CNF) and Integral Sliding Mode (ISM) controllers are used for robust output tracking. This controller consists of two parts, the CNF part...
متن کاملA Chaos-Based Communication Scheme Using Proportional and Proportional-Integral Observers
In this paper, we propose a new chaos-based communication scheme using the observers. The novelty lies in the masking procedure that is employed to hide the confidential information using the chaotic oscillator. We use a combination of the addition and inclusion methods to mask the information. The performance of two observers, the proportional observer (P-observer) and the proportional integra...
متن کامل